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Abstract— This paper presents a multi-objective fast
charging-minimum degradation optimal control problem (OCP)
for a Lithium-ion battery series-connected module with DC/DC
bypass converters. Each cell in the module is modeled via
coupled nonlinear electrochemical, thermal, and aging dynam-
ics. Due to the multiscale temporal nature of the model, a
surrogate model for the solvent diffusion aging dynamics is
developed to mitigate prohibitive simulation time. The multi-
objective OCP is formulated to find a trade-off policy between
fast charging and degradation decay. For this purpose, the
direct collocation approach is utilized to transcribe the OCP to
a nonlinear programming (NLP) problem by parametrization
of the system states, inputs, and charging times. The proposed
OCP is formulated according to two different schemes: (i) same-
charging-time (SCT) and (ii) different-charging-time (DCT).
The former assumes simultaneous charging for all cells, whereas
the latter determines different charging cell times. The perfor-
mance of the proposed SCT and DCT schemes is validated
on an illustrative case study of a battery module with two
series-connected cells in the presence of initial state of charge
imbalance.

I. INTRODUCTION

Lithium-ion batteries (LIBs) have been extensively utilized
in a wide range of applications including electrified vehicles,
microgrids, consumer electronics, and smart grid energy
storage [1], [2] thanks to their high cell voltage, high
energy and power density, long battery life, and good cost
performance [3]. Besides the standardly adopted constant-
current constant-voltage (CCCV) charging protocol [4], strate-
gies based on nonlinear programming (NLP) [5], single
shooting [6], and model predictive control (MPC) [7] have
been investigated to optimize charging of battery cells using
electrochemical dynamics. On the other hand, to date, scant
attention has been paid to battery pack/module charging.

A fundamental challenge when dealing with battery mod-
ules, as opposed to battery cells, is the intrinsic hetereogeneity
among the cells in terms of thermal, and charge parameters
such as state of charge (SOC) and depth of discharge
(DOD) [8], [9]. This can lead to cell imbalance in the battery
module, resulting in accelerated individual cell aging and
nonuniform degradation across the cells. These challenges
add complexity in the development of battery management
system (BMS).
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Fig. 1: Schematic of a battery module with Ncell cells connected
in series, where each cell is connected in parallel to a DC-
DC bypass converter. The variables annotated in blue are the
variables to be optimized, where IB = [IB1 , . . . , IBNcell

]T and
tf = [tf1 , . . . , tfNcell

]T .

The majority of the work done at the pack/module level
has been motivated by cell unbalance and geared towards
the development of novel balancing approaches [10]–[12].
However, there is a current gap addressing optimal battery
module charging. A charging strategy is one of the most
crucial factors that can cause the battery degradation. Since
charging and degradation are tightly coupled and are two
conflicting objectives, simultaneous minimization of those
is not possible. Hence, an optimal strategy is needed to
charge the battery module as fast as possible while taking
the degradation process into consideration. To the best of our
knowledge, to date, no study has focused on a multi-objective
fast charging and minimum degradation optimal control of
battery modules with DC/DC bypass converters.

In this paper, the system under investigation is a LIB
module with series-connected cells in which each cell is
equipped with a DC/DC bypass converter (see Fig. 1). Each
cell is described by coupled nonlinear partial differential
equations (PDEs), ordinary differential equations (ODEs),
and differential algebraic equations (DAEs) describing the
electrochemical, thermal, and aging dynamics. The main
contributions of this paper are fourfold: (i) Present a surrogate
model of solvent diffusion dynamics to mitigate prohibitive
simulation time of the multiscale temporal nature of the
model; (ii) Design a multi-objective OCP for fast charging and
minimum degradation of a battery module with Ncell series-
connected cells shown in Fig. 1; (iii) Formulate the proposed
strategy for two different schemes: (a) same-charging-time
(SCT) and (b) different-charging-time (DCT), and propose
an algorithm to solve them; and (iv) Demonstrate the validity
of the proposed schemes on a case study of a battery module
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with two series-connected cells.
First, we present a joint optimization/curve fitting approach

to calculate solvent concentrations as functions of cell
current and ambient temperature. This mitigates prohibitive
simulation times due to the different time scales in the
dynamics stemming from the solvent diffusion PDEs. With
the high-fidelity battery module model in hand, a nonlinear
OCP is formulated and solved to determine an optimal trade-
off between fast charging and minimum degradation. For
this purpose, the direct collocation (DC) approach [13] is
utilized to transcribe the OCP to an NLP problem. We then
employ the interior point solver IPOPT [14] to solve the NLP
problem. Finally, to confirm the soundness of the proposed
SCT and DCT schemes, simulation studies are carried out
on an illustrative example: a battery module with two series-
connected cells.

II. BATTERY CELL AND MODULE MODELS

This section recalls the models for the LIB cell, and module
with Ncell series-connected cells [15] in which each cell is
modeled with coupled nonlinear PDEs, ODEs, and DAEs
representing the electrochemical, thermal, and aging dynamics
as presented in Table I. Throughout this section, the subscript
i indicates the discretization grid position when converting
the spatial directions of the solid electrodes and solid phase
diffusion PDEs into ODEs. The subscript j ∈ [n; p] refers to
the cell domain (e.g. n = anode and p = cathode) and the
superscript k represents the cell position within the module.
Note that the main difference between the model presented
in this paper and the one in [15] is that now each cell of the
battery module is connected in parallel to a DC/DC converter.

Cell electrochemical model. We use the single particle
model (SPM) to describe the electrochemical dynamics
realized by the governing diffusion-like PDE in (1). The
surface overpotentials ηj are calculated utilizing electrode
surface and constant averaged electrolyte concentration for
each domain (see (2)(a)), and the exchange current density
is calculated for each electrode as in (2)(b). From the
concentration and potential in each electrode, the cell voltage
Vcell is calculated as in (3) in which the cell ohmic resistance
includes the lumped contact Rl, electrolyte Rel, and SEI layer
Rsei resistances. The cell voltage is also dependent on the
open circuit potentials of each electrode Uj with j ∈ [n, p]
that are calculated using empirical relationships based upon
electrode surface concentration stoichiometry. Further details
about this model can be found in [16].

Cell thermal model. The cell thermal dynamics are
modeled using a lumped parameter two-state thermal model,
including core Tc and surface Ts temperatures as in (4).

Cell aging model. A physics-based approach is employed
for battery aging that considers anode SEI layer growth as a
function of solvent reduction kinetics and diffusion dynamics
across the growing SEI layer in order to predict cell capacity
loss and power fade. The solvent concentration available for
reduction reaction at the anode surface is modeled by (5).
The SEI layer growth (6)(a) has a linear relationship with
side-reaction current (7) and the capacity loss is modeled

by integrating side reaction current across the anode active
surface area (see (6)(b)).

Discretization and model parameters. To solve the
electrochemical and aging dynamics, PDEs with spatial
dependence are discretized using Finite Difference Method
(FDM). Solid electrode parameters, including Ds,j and
kj , follow an Arrhenius relationship with temperature as
reported in [17]. Empirical relationships for concentration
and temperature dependencies of electrolyte parameter ke,j
are adopted from [18].

State-space representation: cell-level. The governing
PDEs are transformed into a system of ODEs and DAEs
whose state-space description is given below.

Solid phase diffusion. The electrodes’ state-space system
is given by

ċs,j = αs,jAs,jcs,j + βs,jBs,j [Icell − gs,j ] , (8)

where cs,j = [cs,j,1, . . . , cs,j,Nr,j
]T ∈ RNr,j with cs,j,Nr,j

=

csurfs,j , Bs,j =

[
0, . . . , (2 +

2

Nr − 1
)

]T
∈ RNr,j ,

As,j =


−2 2 0 0 . . . 0 0
1/2 −2 3/2 0 . . . 0 0
0 2/3 −2 4/3 . . . 0 0

...
...

...
...

. . .
...

...
0 0 0 0 . . . 2 −2

 ∈ RNr,j×Nr,j , (9)

αs,j =
Ds,j

∆r2j
, βs,j =


−1

ALjFas,j∆rj
if j = n

1

ALjFas,j∆rj
if j = p

, (10)

and

gs,j(c
surf
s,j , c

surf
solv , Tc, Icell, Lsei) =

{
as,nLnAis if j = n

0 if j = p
(11)

with ∆rj =
Rs,j

Nr,j−1 and Nr,j as the number of radial
discretization grids in SPM for each electrode.

SEI layer growth. The state space of aging is given by

L̇sei = βseigs,n with βsei =
−Msei

2Fρseias,nLnA
. (12)

Solvent diffusion. The solvent diffusion state-space is
presented as follows

ċsolv =



2αsolv(csolv,2 − csolv,1)+

βsolv

(
is
F
− dLsei

dt
csolv,1

)
, if i = 1

αsolv (csolv,i+1 − 2csolv,i + csolv,i−1) +

γsolv (csolv,i+1 − csolv,i−1) , if 1<i<Nsei

0, if i = Nsei

(13)

with αsolv =
Dsolv

(Lsei∆ξ)
2 , γsolv =

(
ξ − 1

2Lsei∆ξ

dLsei

dt

)
,

βsolv =

(
2

Lsei∆ξ
+

1

Dsolv

dLsei

dt

)
, (14)

where csolv = [csolv,1, . . . , csolv,Nsei
]T ∈ RNsei with

csolv,1 = csurfsolv ; Nsei is the number of SEI layer discretization
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TABLE I: Electrochemical-thermal-aging dynamics of an LIB cell.

Electrochemical dynamics:
Mass conservation in solid phase

∂cs,j
∂t

=
Ds,j

r2
∂

∂r

[
r2
∂cs,j
∂r

]
, j ∈ [n, p] (1)

∂cs,j
∂r

∣∣∣
r=0

= 0
∂cs,j
∂r

∣∣∣
r=Rs,j

=
±Icell

Ds,jas,jALjF
+ gs,j(C

surf
s,j , Csurf

solv , Tc, Icell, Lsei)

Electrode overpotential and exchange current density (a) ηj =
RgTc
0.5F

sinh−1
(

Icell
2Aas,jLji0,j

)
, (b) i0,j = kj

√
cavge,j c

surf
s,j

(
cmax
s,j − c

surf
s,j

)
, j ∈ [n, p] (2)

Cell voltage Vcell = Up(csurfs,p ) + ηp(csurfs,p , cavge,p , Tc, Icell)− Un(csurfs,n )− ηn(csurfs,n , cavge,n , Tc, Icell)− Icell (Rl +Rel +Rsei) (3)

Thermal dynamics: Cell core and surface heat balance (a) Cc
dTc
dt

= Icell(Voc − Vcell) +
Ts − Tc
Rc

, (b) Cs
dTs
dt

=
Tamb − Ts

Ru
− Ts − Tc

Rc
(4)

Aging dynamics:
Mass conservation in SEI

∂csolv
∂t

= Dsolv
∂2csolv
∂r2

− dLsei

dt

∂csolv
∂r

, −Dsolv
∂csolv
∂r

∣∣∣
r=Rs,n

+
dLsei

dt
csurfsolv =

is
F
, csolv

∣∣∣
r=Rn+Lsei

= εseic
bulk
solv (5)

SEI layer growth and cell capacity loss (a)
dLsei

dt
= − isMsei

2Fρsei
, (b)

dQ

dt
= isALnas,n (6)

Side reaction current density is = −2Fkf (csurfs,n )2csurfsolv exp

[
−βF
RgTc

(Φs,n −RseiIcell − Us)

]
(7)

points; and ∆ξ = 1
Nsei−1 and ξ =

r−Rs,n

Lsei
.

Surrogate model for solvent diffusion dynamics. The
different time scales in the electrochemical, thermal, and SEI
layer growth and solvent diffusion dynamics, cause prohibitive
simulation times. In particular, the solvent diffusion PDEs (5)
have been found to be the major bottle neck. To mitigate this
issue, we propose a surrogate model that captures the solvent
diffusion dynamics (13) based on a joint optimization/curve
fitting approach. For this purpose, the following unconstrained
optimization problem is formulated to find the optimal c∗solv
in such a way that the error between SEI layer thicknesses
from the SPM with and without solvent diffusion PDEs, i.e.,
La
sei and L∗sei|c∗solv , respectively, is minimized for different

values of Icell and Tamb:

c∗solv = min
csolv
‖La

sei − L∗sei‖. (15)

Once the optimal values c∗solv are found for each current
Icell and ambient temperature Tamb, 5th-other polynomials
G(Icell, Tamb) are fitted to the optimal points for all currents
and each ambient temperature. The end result of this joint
optimization/fitting approach is a surrogate model for the sol-
vent diffusion from which the optimal solvent concentration
can be computed for each Tamb as c∗solv = Gk(Icell, Tambk),
where Gk is the function that calculates c∗solv at the kth

ambient temperature. In this work, we consider Icell to
be discretely sampled within the range [−6 − 0.5] A.
Besides, the MATLAB built-in functions fminsearch and
polyfit are employed to solve the optimization (15) and fit
the polynomials Gk(., .), respectively.

State-space representation: module-level. With having
access to state vectors, input variables, and state-space
matrices for each cell, a convenient shorthand notation for
module-level dynamics with Ncell series-connected cells can
be presented as follows

ċmod
s,j = Amod

s,j cmod
s,j +Bmod

s,j u−Gmod
s,j (16)

L̇
mod

sei = Gmod
sei

Ṫ
mod

= Amod
thermTmod +Bmod

thermu +Gmod
thermTamb,

for which the module-level block diagonal coefficient matrices
are defined in [15], and the state vectors and input variables

for each cell are concatenated to obtain the module state
vector

x(t) = [cmod
s,j ,Tmod,Lmod

sei ,Q
mod]T . (17)

Cell-to-cell heat transfer. Modeling the heat transfer be-
tween cells in the battery module is essential to understand the
thermal and aging effects in the module [19]. The key attribute
of the module-level model is that its thermal dynamics can
provide the direct interconnection between adjacent cells in
the battery module

Cs
dTsk
dt

=
Tamb − Tsk

Ru
− Tsk − Tck

Rc
+

Tsk − Tsk+1

Rm
+
Tsk − Tsk−1

Rm
. (18)

It should be noted that (18) modifies the conventional two-
state thermal model governing equations (4) by incorporating
the cell-to-cell heat transfer terms.

III. OPTIMAL CONTROL PROBLEM FORMULATION

In this section, we formulate a multi-objective OCP for fast
charging and minimum degradation of a battery module with
Ncell series-connected cells demonstrated in Fig. 1. The cells
may have initial SOC, temperature, and state of health (SOH)
imbalances. SOH includes Q and Rsei that are dependent
on Lsei; cells with different values of Lsei result in SOH
imbalance within the battery module. Given these imbalances,
we propose to solve the OCP for two different formulations
SCT and DCT, where the former assumes that all cells are
charged simultaneously, while the latter considers different
times of charging for different cells.

In view of Fig. 1, I0 = Icelli + IBi for i = 1, . . . , Ncell

from which one holds

Icell = [Icell1 , . . . , IcellNcell
]T

= [I0 − IB1
, . . . , I0 − IBNcell

]T . (19)

During charging, the module current I0 ∈ < and the vector
of balancing currents IB = [IB1

, . . . , IBNcell
]T ∈ <Ncell

are unknown and must be optimally selected by solving
the optimization problem; the number of degrees of freedom
(DoF) is NDoF = Ncell+1. Each cell is connected in parallel
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to a DC/DC bypass converter1 whose current is determined
by the proposed optimal controller.

In light of the above objective, the following OCP is
formally defined

X∗ = argmin
X∈<Nopt

αβ1h(tf )+(1−α)β2

(
g1(Lsei) + g2(L̇sei)

)
(20)

where the vector of optimization variables X is com-
prised of the vector of final times of charging tf =
[tf1 , . . . , tfNcell

]T ∈ <Ncell (under DCT scheme), the system
state x(t) ∈ <Ns , the module current I0, and the balancing
current IB such that

X = [tf ,x(t), I0(t), IB(t)]
T ∈ <Nopt . (21)

The number of optimization variables is Nopt = Ns+2Ncell+
1, and the continuously differentiable functions g1, g2, and
h(tf ) are defined as

g1(Lsei) =
1

Ncell

Ncell∑
i=1

Lseii ,

g2(L̇sei) =
1

Ncell

Ncell∑
i=1

L̇seii ,

h(tf ) =
1

Ncell

Ncell∑
i=1

tfi . (22)

Note that g1(Lsei), g2(L̇sei), and h(tf ) are operators that
return the average of SEI layer thicknesses, the average of
their rates, and the average of charging times, respectively.
Thus, the OCP (20) along with the definitions (22) forms
a min-mean optimization problem. Besides, β1, β2 > 0 are
the optimization weights and 0 ≤ α ≤ 1 is a trade-off
coefficient that can be adjusted for three different paradigms:
fast charging (α = 1), minimum degradation (α = 0), and
balanced charging-degradation (0 < α < 1). The operation of
the battery module is subject to the dynamic constraints (16)
and the following task constraints

IBmin ≤ IBi
(t) ≤ IBmax , I0min ≤ I0(t) ≤ I0max ,

SOCi(tf ) = SOCtarget, SOCi(t0) = SOCinitiali ,
Vcelli(t) ≤ Vcellmax, 0 ≤ tfi ≤ tfmax ,
Lseii(t0) = Lsei0i

, Qi(t0) = Q0i ,
Tji(t0) = Tji0 , Tjimin ≤ Tji(t) ≤ Tjimax , j ∈ {c, s},
θj0%c

max
s,j ≤ csj (t) ≤ θj100%c

max
s,j , j ∈ {n, p},

(23)
where i = 1, . . . , Ncell. It should be pointed out that for
a given Nr, the number of states is calculated as Ns =
Ncell (4 + 2(Nr − 1)).

Despite the cell imbalance in the battery module, one might
consider the simultaneous charging of the cells; this can be
realized through the SCT formulation. To implement SCT,
the OCP resembles the DCT scheme except for the following
discrepancies.
(a) The final times of charging are the same for all cells,

1The temperature effects on the DC/DC bypass converters will be the
subject of future investigation.

which implies that tf ∈ <.
(b) The number of optimization variables is Nopt = Ns +

Ncell + 2.
(c) The cost function associated with charging reduces to

h(tf ) = tf .
(d) The constraint associated with the charging time reduces

to 0 ≤ tf ≤ tfmax .
Since the dynamic constraints (16) are nonlinear and

coupled, the problem (20) subject to (16) and (23) can
be solved using a nonlinear optimization problem. In this
paper, we utilize the DC approach [13] to transcribe the
original OCP (20) to an NLP problem by approximating all
elements of the unknown vector X as polynomial splines.
Spline approximates a continuous trajectory by combining
a sequence of polynomial segments that are glued together
at given break points (BPs). This way all trajectories are
discretized in time 0 = t0 < t1 < · · · < tNBP

= tf , where
NBP is the number of BPs, and t0 and tf are the initial and
final times, respectively.

By approximating all of the system trajectories tf , x(t),
I0(t), and IB(t), the original OCP (20) can be transcribed
to the NLP problem using the DC approach under which the
cost and constraints are applied to the optimization variables
at collocation points (CPs) which differ from the BPs. After
transcription of the OCP to the NLP problem using the DC,
the well-developed interior point solver IPOPT [14] can be
employed to solve the NLP problem. All dynamic and task
constraints, and the cost are written symbolically by making
use of the Matlab symbolic toolbox. This formulation provides
symbolic differentiation of the OCP, which in turn, results
in remarkable improvement in convergence time and solving
reliability.

IV. SIMULATION RESULTS

In this section, we validate the effectiveness of the proposed
optimal control algorithm for both SCT and DCT formulations
on a battery module with two series connected cells (i.e.,
Ncell = 2), where for each cell, a DC/DC bypass converter is
connected in parallel (see Fig. 1). Throughout the simulations,
we assume that there is an initial SOC imbalance among
the cells (SOC1(0) 6= SOC2(0)), while no mismatch
between temperatures, SEI layer thicknesses, and capacities
of individual battery cells is assumed. The physical bounds
in (23) are set to IBmin = I0min = −6 A, IBmax = 0 A, I0max =
−0.5 A, SOCi(tf ) = 0.8, Vcellmax = 4.2 V , tfmax = 2000 s,
Tjimin = 5◦C, and Tjimax = 45◦C with j ∈ {c, s} and i = 1, 2.
The initial conditions are picked as Lseii(0) = 5× 10−9 m,
Qi(0) = 2 Ah, and Tci(0) = Tsi(0) = Tamb (i.e., starting
from the rest). To provide the balanced charging-degradation
protocol, the optimization weights and the trade-off coefficient
are adjusted to be β1 = 1, β2 = 5× 108, and α = 0.5.

It can be seen from Fig. 2 that despite the initial SOC
mismatch, both cells are charged simultaneously at tf = 985 s
(with different rates) while the cell voltages are bounded by
Vcellmax = 4.2 V . As observed in this figure, in contrast with
Cell 2, Cell 1 that has lower initial SOC ages more, loses more
capacity, obtains higher final core and surface temperatures,
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TABLE II: Performance comparison between the SCT and DCT formulations with initial SOC mismatch SOC1(0) = 0.2 and SOC2(0) =

0.4 at Tamb = 25◦C, where ∆zi =
|zi(tf )−zi(t0)|

zi(t0)
× 100% with z ∈ {Lsei, Q} and i = 1, 2 denotes an operator that returns the variation

of variable zi with respect to its initial condition zi(t0). The best value of each metric is shown in bold.
Scheme (∆Lsei1 ,∆Lsei2)% (∆Q1,∆Q2)% (tf1 , tf2) s

SCT (8.240, 7.364) (0.021, 0.018) (985, 985)
DCT (9.920, 8.859) (0.025, 0.022) (1119, 807)

Fig. 2: Results from the multi-objective OCP for SCT formulation
with initial SOC mismatch SOC(0) = [0.2, 0.4] at Tamb = 25◦C.

and absorbs greater current (the lower IB1 results in the
higher Icell1 ).

In contrast to SCT scheme under which simultaneous
charging is achieved, charging times are different for different
cells with the DCT scheme (see Fig. 3). As expected, the
cell with higher initial SOC (i.e., Cell 2) is charged faster (at
tf2 = 807 s) and then its SOC remains constant until the other
cell (i.e., Cell 1) reaches the target SOC at tf1 = 1119 s (the
rates of charge are the same for different cells). As observed,
once Cell 2 is charged, the whole current is absorbed by
its DC/DC bypass converter which results in I0 = IB2

over
tf2 ≤ t ≤ tf1 . This, in turn, follows that (i) Vcell2 drops at
tf2 and remains constant afterwards, (ii) Tc2 and Ts2 start
decreasing at tf2 , and (iii) the rates of aging and capacity
loss slow down for Cell 2 at t = tf2 . Furthermore, Fig. 3
shows that the results obtained by DCT are consistent with
ones from SCT scheme from which Cell 2 (the cell with
higher initial SOC) ages less, loses less capacity, and meets
lower final core and surface temperatures.

To compare the results of SCT and DCT, Table II lists
quantitative comparisons between two schemes. According
to this table, although DCT scheme charges the cell with

Fig. 3: Results from the multi-objective OCP for DCT formulation
with initial SOC mismatch SOC(0) = [0.2, 0.4] at Tamb = 25◦C.

higher initial SOC faster, the optimization under SCT scheme
renders lower variations for Lseii and Qi.

V. DISCUSSION AND CONCLUSION

This paper formulated a multi-objective fast charging-
minimum degradation OCP for battery modules with
Ncell series-connected cells with DC/DC bypass converters.
Electrochemical-thermal-aging model of the battery module
was provided. We introduced a joint optimization/curve
fitting method to calculate the solvent concentrations as a
remedy for prohibitive simulation times causing by the solvent
diffusion dynamics. An OCP was developed with SCT and
DCT schemes. DC approach was employed to transcribe the
OCP to an NLP that was solved by IPOPT. To validate
the effectiveness of SCT and DCT schemes, simulation
studies were carried out on a battery module with two series-
connected cells in the presence of initial SOC imbalance.
Results for SOC(0) = [0.2, 0.4] and Tamb = 25◦C showed
that under both schemes, the cell with lower initial SOC ages
more, loses more capacity, and obtains higher final core and
surface temperatures. Finally, our findings showed that the
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Nomenclature

cs,j Concentration in solid phase [mol/m3] ke,j Electrolyte conductivity [S/m] csolv Solvent concentration [mol/m3]

Tc Cell core temperature [K] Ts Cell surface temperature [K] Lsei SEI layer thickness [m]

Q Cell capacity [Ah] Icell Cell current [A] ηj Overpotential [V]

i0,j Exchange current density [A/m2] Uj Open circuit potential (electrode) [V] Voc Open circuit potential (cell) [V]

is Side reaction current density [A/m2] Ds,j Solid phase diffusion [m2/s] Rs,j Particle radius [m]

as,j Specific interfacial surface area [m−1] A Cell cross sectional area [m2] Lj Domain thickness [m]

F Faraday’s constant [C/mol] cmax
s,j Maximum electrode concentration [mol/m3] Rm Cell-to-cell heat transfer resistance [K/W]

kj Intercalation rate constant [m2.5/s-mol0.5] Rl Lumped contact resistance [Ω] Rel Electrolyte resistance [Ω]

Rsei SEI layer resistance [Ω] Rg Universal gas constant [J/mol-K] Dsolv Solvent diffusion coefficient in SEI layer [m2/s]

εsei SEI Layer porosity [-] ρsei SEI layer density [kg/m3] I0, IB Module and balancing currents [A]

Us Solvent reduction potential [V] Msei Molar mass of SEI layer [kg/mol] Φs,j Surface potential [V]

Cs Heat capacity of cell surface [J/K] Cc Heat capacity of cell core [J/K] Rc Conductive resistance - core/surface [K/W]

Ru Convective resistance - surface/surroundings [K/W] Tamb Ambient temperature [K] Nr,j Number of radial discretization points [-]

Nsei Number of SEI layer discretization points [-] csurfs,j Surface concentration in solid phase [mol/m3] csurfsolv Surface solvent concentration [mol/m3]

cavge,j Average electrolyte concentration [mol/m3] Ns, Ncell Number of states and cells [-] α Trade-off coefficient [-]

u Cells’ current [A] θj0% Reference stoichiometry ratio at 0% SOC [-] θj100% Reference stoichiometry ratio at 100% SOC [-]

kf Solvent reduction rate constant [mol−2s−1] NBP Number of BPs [-] c∗solv Optimal solvent concentration [mol/m3]

optimization under SCT scheme renders lower variations of
SEI layer thickness and capacity over the DCT formulation.

REFERENCES

[1] A. Hoke, A. Brissette, D. Maksimović, A. Pratt, and K. Smith, “Electric
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